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Abstract

We evolve artificial agents to perform a simple tracking task
in three conditions: one individual (Isolated Condition) and
two joint action conditions with division of labor. The joint
conditions differ by whether two agents switch complemen-
tary roles during the task (Generalist Condition) or always
play the same role (Specialist Condition). At the end of evolu-
tionary runs we calculate the agents’ neural complexity using
Tononi-Sporns-Edelman (TSE) complexity measure which
relates to Integrated Information Theory (IIT). We show that
(1) division of labor with specialization leads to a level of
neural complexity comparable to the complexity of perform-
ing the same task alone, and that (2) both are lower than
neural complexity when performing the task jointly with role
switching. We further consider viewing collaborating agents
as a single extended system and calculate its joint neural com-
plexity. We demonstrate that contrary to our predictions, the
same pattern of results, i.e., Generalists’ complexity being
higher than Specialists’, holds also in this conceptualization.

Introduction
Social brain hypothesis (Dunbar, 2009; Shultz and Dunbar,
2010) proposes that the well-noted increase in human brain
size over our evolutionary history, especially since the genus
Homo (Tobias, 1971; Ruff et al., 1997) is related to increased
demands on our cognitive processing of social information,
such as the need to keep track of specific individuals and
their relationships within an ever-growing group. This hy-
pothesis, despite its popularity and an intuitive appeal, has
faced criticism from several directions.

First, both before and after the formulation of the social
brain hypothesis, a variety of different factors have been
proposed for the observed pattern of encephalization, such
as hunting (Krantz, 1968), language (Parker and Gibson,
1979), greater reliance on vision (Barton, 2004) or cooking
(Carmody et al., 2011). Second, it has been pointed out that
over the more recent history (Holocene), human brain has
actually been shrinking (Brown, 1987; Henneberg, 1988).
Since the complexity of our social interactions has arguably
only increased during the same period, it seems inconsis-
tent to claim that now it has led to an opposite pattern of

brain changes than in the earlier stages of evolution (Bed-
narik, 2014). However, social factors cannot be completely
discounted either since an increase in the number and type
of our interactions was accompanied by an increase in their
ordered patterning through culture and social institutions.
This could have, in fact, reduced demands on social cog-
nitive processing1 or rather, our brain could remain equally
effective with a smaller size by learning to offload part of the
work onto external sociocultural resources (Bednarik, 2014;
Heinrich, 2015; Sterelny, 2017).

Interestingly, a similar discussion has been playing out
with respect to the brain size in eusocial insects. On the one
hand, it has been found, for instance, that long-term gregar-
ious locusts have larger brains than solitary ones (Ott and
Rogers, 2010) and that group size in ants is positively corre-
lated with brain size (Kamhi et al., 2016). Contrary to that,
O’Donnell et al. (2015) found that investment in the brain
central processing areas in wasps is lower in social com-
pared to solitary species and Riveros et al. (2012) showed
that social complexity in ants is associated with reduced
brain size. While also here non-social factors might be com-
plicating observed correlations, the hypothesis of collective
intelligence has been frequently raised, whereby globally
coordinated performance is proposed to be a result of cog-
nitively simple mechanisms of individual ants operating in
conjunction with social structuring of their behaviors (An-
derson and McShea, 2001; Couzin, 2009; Sasaki and Pratt,
2012).

Thus, the hypothesis common to both taxa is that in-
creased social organization, such as, for instance, division
of labor, can lower the cognitive effort required of the in-
dividuals and allow for a smaller brain tissue investment.
This association can be studied by looking at archaeologi-
cal evidence or large-scale correlations between insect so-
ciety structures and their brains. However, another method
we can bring to bear on the discussion is through simulation

1Another possibility that has been raised, and that goes under
the name of self-domestication hypothesis (Hare, 2017), is that
smaller brains have been actively selected for, as a by-product of
selection for prosociality.



of artificial agents engaged in different types of coordination
tasks and direct measurement of their brain complexity. This
is precisely the aim of the current study. We now describe
our choice of a coordination problem and a measure of brain
complexity.

Regarding coordination scenario, it is first important to
note that there is a large body of simulation studies on divi-
sion of labor, especially in the field of swarm robotics. How-
ever, many of them focus on the problem of how coordinated
task performance (e.g., optimal foraging, Montanier et al.
2016, or specialization strategy, Goldsby et al. 2012) can
emerge in a population of agents that have no access to the
global state of the environment and population needs. Com-
pared to this type of work, our approach is different in three
ways. First, in more common swarm robotics scenarios it
is often the case that certain factors are manipulated (the
agents’ internal perception or decision-making mechanisms,
the type of the environment etc.) and the type of coordina-
tion that emerges is a dependent variable. In our case, since
we are interested in brain complexity given a particular coor-
dination scenario, the type of coordination is instead the ma-
nipulated factor, i.e., we design our agents to coordinate in
a certain way. Second, in typical simulations the focus is on
the population of coordinating agents. We instead start with
a more minimal case of just two agents performing a task
together in any given experimental trial, although they have
a chance to do it with a number of partners. We believe this
is sufficient for understanding the fundamental properties of
cognitive requirements posed by coordination to individual
brains.2 Third, many tasks employed in division of labor
simulations and studied in eusocial insect research are of the
“distributive” kind.3 That is, they can be performed concur-
rently by agents that do not need to “mind each other”. For
instance, one could think of one ant defending the colony
from an attacker and another ant bringing food back to the
nest. While we plan to address this case in the future, in
the present study we focus on a more cognitively challeng-
ing case of performing a task which requires two agents to
perform different parts of it concurrently in such a way that
they interlock in appropriate ways in producing an overall
outcome. We believe this type of task better reflects a level
of coordination difficulty implied by the social brain hypoth-
esis.

With respect to both insect and human sociality it has been
pointed out that the type of social coordination adopted in a
population might have implications for brain size and cogni-
tive complexity. Thus, greater task specialization might lead
to lower complexity while greater reliance on behaviorally
flexible individuals would instead require higher complexity
(Gronenberg and Riveros, 2009; Riveros et al., 2012; Slors,

2This is not to say that extending our study to a full group in-
teraction is not a promising future research area.

3See Abramova and Slors (2015) for a distinction between dis-
tributive and contributive action coordination.

2019; O’Donnell et al., 2015). For this reason, we focus
specifically on comparing two coordination scenarios: that
of generalist and specialist agents. In particular, we set up
a simple, yet cognitively motivated (Knoblich and Jordan,
2003), task of a 1D environment that contains a target that
moves back and forth at different speeds. The agents control
a tracker and are assessed on how closely they can follow the
target. We implement three conditions for this experiment:

1. In the Isolated Condition (IC) each agent controls the
movement of the tracker alone, which mimics a case of
solitary individuals and serves as a cognitive complexity
baseline.

2. In the joint Generalist Condition (GC), the tracker is con-
trolled by two agents, one of which moves it to the left
and the other to the right. The agents switch roles in dif-
ferent trials such that in order to be successful each agent
has to be able to control the tracker in both directions.

3. In the Specialist Condition (SC), the tracker is still con-
trolled by two agents as in GC but two populations of
agents are evolved separately such that half of the agents
ever experience only left direction control and the other
half only right direction control.

We evolve artificial agents controlled by a small neural
network in these three conditions and compare their brain
complexity. Now, the question of how to operationalize this
dependent variable is by no means straightforward. The sim-
plest measure such as the number of neurons (used, for in-
stance in a related study by Nagar et al., 2019) does not seem
appropriate because a smaller brain can in principle be more
cognitively efficient than a bigger brain, depending on its
organization and its embedding in a particular task environ-
ment. In the field of biological complexity, a great variety of
more general measures have been proposed, many of which
focus on whether some time series produced by the organism
shows signs of an underlying chaotic process (Adami, 2002).
However, such measures often require additional tests that
differentiate between chaos and randomness (Gan and Lear-
month, 2015) and furthermore, a measure specifically ap-
propriate for cognition should also correlate with adaptive
behavior, possibly increase over evolution in parallel with
improvement in performance and capture some properties
of a cognitive system, rather than isolated time series.

An example of a measure that fits these criteria and that
enjoys good theoretical and empirical support is Tononi-
Sporns-Edelmans (TSE) complexity (Tononi et al., 1994).
As a precursor to Integrated Information Theory (IIT)
(Tononi, 2004; Tononi et al., 2016) which is hypothesized to
capture the essence of consciousness (Tononi, 2008), TSE
also quantifies the “information that is generated by the
whole mechanism above and beyond the information gen-
erated by its parts” (Oizumi et al., 2014, p.8). However, the



applicability of this measure is broader and extends to any
mechanism that cannot be reduced to its parts and is there-
fore suitably complex.

TSE complexity has a number of characteristics that make
it a suitable choice for operationalization of brain complex-
ity. It is low for both completely regular and completely
random processes. It allows us to look at the complexity of
a network as a whole, while taking into account the contribu-
tion of various neuronal subsets (including individual units),
thereby quantifying its complexity in terms of interplay be-
tween integration and differentiation of its neuronal units’
activity. Finally, it has been found to correlate with the sys-
tem fitness, in that it increases over evolution with agents
required to perform various tasks (Yaeger, 2009) and in that
it is also higher for more difficult tasks that involve rich sen-
sory information and pose high motor demands (Seth and
Edelman, 2004).4

In sum, the main aim of our study is to compare how TSE
complexity, calculated from the time series of neural acti-
vation of evolved agents, differs between the three condi-
tions outlined above. We make the following predictions. If
social brain hypothesis is correct, TSE complexity in joint
conditions (GC and SC) should be higher than in IC because
coordinating with another agent is inherently more complex
than performing a task alone.5 Moreover, if collective intel-
ligence hypothesis is correct and task specialization is less
cognitively demanding, TSE complexity should be lower in
SC than in GC.

Starting from a collective intelligence view, we can make
an additional prediction. Coordinated joint action can be
said to involve an emergence of a higher-level functional en-
tity that spans the interactants, not reducible to the individ-
uals involved (De Jaegher and Di Paolo, 2007; Marsh et al.,
2009). More generally, on the level of the whole social sys-
tem characterized by division of labor, components might
be specialized but global behavior integrated (Lawrence and
Lorsch, 1967). That is, the concepts of differentiation and
integration also apply to social units, not just individuals and
therefore also TSE complexity can be calculated based on
statistical dependencies of neural activity pooled from both
agents’ brains (cf. an application of this strategy to human
behavioral data, Engel and Malone 2018).

In our study this means that we can calculate the com-

4Another possible measure is predictive information (Bialek
et al., 2001) which focuses on the correlation between inputs and
outputs. However, some concerns have been raised to what extent
this focus on the input-output layers of the organism can capture the
complexity of the internal nodes (Edlund et al., 2011). We leave it
to future work to explore the applicability of this measure to our
use case.

5Note that this is just a first small step in directly testing the pre-
dictions of the social brain hypothesis. A further test, that we leave
for future work, could, for instance, examine how neural complex-
ity varies depending on the number and types of coordination part-
ners in the joint conditions.

bined brain complexity of agents in joint conditions. We
predict that whenever the pairs of agents manage to estab-
lish a successful way to solve the task, it should not matter
how exactly the division of labor is performed and how it is
realized in the individual brains. Therefore, no difference in
TSE complexity should obtain between GC and SC.

Methods
Tracking task
The implemented simulation6 is similar to the one described
in Sangati and Hofmann (2020) and based on the psycholog-
ical experiment paradigm of Knoblich and Jordan (2003).
The environment is a 1D unbounded continuous line that
contains a tracker and a target (Figure 1). The target moves
horizontally following an oscillatory motion with constant
velocity and reverses at fixed points of the environment.
More precisely, it always starts at the central position 0 and
inverts its velocity at coordinates 200 and −200.

tracker target

tracker eye

tracker wheel

Figure 1: Experimental setup.

The tracker is placed on the same line and is free to move
horizontally without colliding with the target or any bound-
ary. Both target and tracker are points in space with no di-
mension. The tracker perceives the target by means of two
eyes located at the opposite sides of its body and aligned
with the environmental line. The eyes are sensitive to how
far the target is to the right or left of the tracker. The signal
to both eyes is maximum when the target and tracker overlap
and 0 when the target is on the opposite side of the tracker’s
body for a given eye. When the target is on the same side,
the signal decreases linearly reaching 0 when the target is
more than 200 units away. The tracker moves by means of
two wheels controlling its right (positive) and left (negative)
velocity respectively. The overall velocity is given by the
difference of the right and left velocities.

The goal of the tracker is to try to stay on top of the target
as much as possible.

Agent architecture
We investigate 3 conditions in which the tracker is controlled
by one or two artificial agents. In all cases each agent is im-
plemented as a Continuous Time Recursive Neural Network
(CTRNN) (Beer, 1995) with 2 sensors, 2 brain neurons, and
2 motors (see Figure 2).

6The source code and details to reproduce the re-
sults are available at https://github.com/oist/
ecsu-dol-simulation

https://github.com/oist/ecsu-dol-simulation
https://github.com/oist/ecsu-dol-simulation
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Figure 2: Network architecture: S1, S2 are sensory nodes,
N1, N2 are inner nodes (brain), M1, M2 are motor nodes.

The output of the sensor nodes OS is given by:

OS = GS σ(IS + θS) (1)

where σ is the standard logistic function 1/(1 + e−x), IS is
the sensory input, θS is the sensors’ bias and GS is its gain.
Both sensor nodes share common bias (in the range [−3, 3]
and gain (in the range [1, 20]).

The CTRNN update rule for each brain neuron is defined
by the following standard Euler integration formula:

∆yi =
∆t

τi
−yi+

2∑
j=1

Wi,j σ(yj +θN )+

2∑
S=1

Wi,S OS (2)

where ∆yi refers to the rate of change of internal state yi
of neuron i based on the neural time-constant τi and time
step ∆t set to 0.1. ∆yi depends on three values: the current
state of the neuron, the weighted sum of outputs from the
2 neurons in the network and the total external input. The
output of each neuron based on its internal state is given by
the activation function σ(yj + θN ) where θN refers to the
neurons’ bias. The output is multiplied by the inter-neural
weight Wi,j . The total external input received by the neu-
ron is given by the weighted sum of the sensory input with
weights Wi,s from sensor node S to neuron i and OS is the
sensory output from each sensor node. Both agents’ neurons
share common time-constant (in the range [1, 2]) and bias (in
the range [−3, 3]).

The input to the motor nodes is a weighted sum of the
inner neurons’ outputs. The output of each of the motor node
i, Mi, is given by:

Mi = GM σ

(
2∑

N=1

WN,i ∗ON + θM

)
(3)

where ON is the output of the corresponding inner neu-
ron N , that are weighted by WN,i, θM is the motors’ bias
and GM is the gain. All actuator nodes share common bias
(in the range [−3, 3]) and gain (in the range [1, 20]). All
network weights (sensors, inter-neurons, motors) are in the
range [−8, 8].

The three conditions mainly differ in the way agents’ mo-
tors are mapped to the tracker wheels. See Table 1 for a
concise description of the various cases.

Isolated Condition (IC) This is the simplest scenario in
which the tracker is controlled by a single agent. The two
sensor nodes receive the inputs directly from the respec-
tive tracker’s eyes. The two motor outputs are directly
connected to the left (output from M1) and right (output
from M2) tracker’s wheels.

Generalist Condition (GC) Two agents control the
tracker. Both agents receive the same inputs from the
tracker’s eyes. In two of the four trials, the left motor
output (M1) of the first agent is connected to the left
wheel of the tracker, and the right motor output (M2)
of the second agent to the right wheel. In the other two
trials, the connection is reversed: the first agent controls
the right wheel with the right motor and the second agents
controls the left wheel with the left motor. The motor not
connected to any tracker wheels can continue to be active
but without any effect on the tracker movement.

Specialist Condition (SC) Two agents control the tracker,
this time the first agent’s left motor (M1) always controls
the left wheel throughout the trials, and the second agent’s
right motor (M2) always controls the right wheel.

In order to ensure that only one motor moves at a given
instant of time, a mechanism is designed to force the wheels
to temporarily stop when both motors have a speed greater
than 0.1. This is to prevent a trivial solution that has emerged
in our pilot study runs, in which the agent is able to control
tracker movement by a constant output of one motor and
only varying the other motor output.

t=1 t=2 t=3 t=4
Isolated L R L R L R L R
Generalist A L - - R L - - R
Generalist B - R L - - R L -
Specialist A L - L - L - L -
Specialist B - R - R - R - R

Table 1: Trial structure in 3 conditions. A and B refer to two
agents performing the trials together.

Evolutionary algorithm
The behavior of the agents is evolved using a real-valued
mixed genetic algorithm (GA) applied to their neural net-
work parameters, where each value is in the interval [-1,1]



and scaled during simulation to the parameter ranges spec-
ified above. The genomes are composed of 16 parameters
(time constants, bias terms, gains, weights of inter-neurons,
sensors, motors). The population of agents is initialized with
all parameters set to 0.7

In the IC, the population size is 48, whereas for the GC
and SC it is 96 since agents are undergoing the simulation
in pairs. However, while generalists are evolved in a single
population, the specialists are evolved in two distinct popu-
lations (one learning to control the left tracker wheel, and the
other the right) that are evaluated and reproduced separately.

In each generation, in the IC all agents in the population
perform the task alone. In the GC the population is first
split randomly into 2 equally sized groups A and B and each
agent in A is paired with 3 random B agents to perform the
task. In the SC, the populations are evolved separately but
each agent in A is still paired with 3 random agents in B
for the simulation. This way we ensure that the agents ac-
quire a more general capacity to perform the task with differ-
ent partners rather than co-evolving together with a specific
partner.

Each task run consists in 4 trials where the target moves
with velocities [1,−1, 2,−2] respectively. Each trial last for
L = 500 units of time, and after each trial t the average
distance between the position of the tracker (xtr) and the
target (xtg) is computed as the trial error Et:

Et =
1

L

L∑
i=0

|xtr − xtg| (4)

The overall experiment error is the average of the 4 trial er-
rors. In the joint conditions this experiment error is further
averaged across performance with 3 partners to obtain task
error value for each agent.

After sorting the population based on increasing over-
all error (best performance first), the population fitness is
obtained with Fitness Proportionate Selection method with
maximum expected offspring parameter set to 1.1. During
the reproduction phase, a mating pool is obtained by select-
ing 95% of the agents of the previous generation based on
the Roulette Wheel Selection algorithm. The new genera-
tion is created by copying the best 5% of the agents of the
previous generation without modification (elite population),
and the remaining population is obtained by crossover and
mutation on the mating pool: for consecutive pair of agents
in the shuffled mating pool (the parents), two new individ-
uals are generated i) via crossover with probability of 0.1,
uniformly across all genotype sites, otherwise ii) by dupli-
cating the parent and applying a zero-mean Gaussian muta-
tion noise with variance of 0.05. Each experimental setup is
run on 20 random seeds for 5, 000 generations.

7This is to ensure that neural complexity (see following sec-
tions) is 0 at the beginning of the evolution.

Neural complexity
We follow the approach by Seth and Edelman (2004) which
calculates TSE complexity for a general case of a system X
comprising N nodes (e.g., neural units). In our case, X is
analogous to a single agent.

Given any subset Xk of k nodes and the complementary
subset X \Xk, we can compute the mutual information be-
tween these two subsets (i.e., bipartition of X) as:

MI(Xk;X \Xk) = H(Xk) +H(X \Xk)−H(X) (5)

where H(X) denotes the entropy function and is calculated
as (Cover and Thomas, 1991):

H(X) =
1

2
ln( (2πe)N |cov(X)| ) (6)

where cov is the N × N covariance matrix of X , and | · |
denotes its determinant.8

TSE complexity C(X) is then computed by first enumer-
ating all possible subsets Xk

j with j being the jth bipartition
with k nodes (for k = 1, . . . ,N/2), and then computing the
average MI over all Sk =

(N
k

)
bipartitions (Xk

j , X \Xk
j ),

and finally summing over k:

C(X) =

N/2∑
k=1

1

Sk

Sk∑
j=1

MI(Xk
j ;X \Xk

j ) (7)

It is apparent that in our case TSE complexity in equa-
tion 7 can be calculated via incorporating various subsets of
agents’ nodes. Given the differences in motor nodes’ func-
tion across different conditions, we discard these nodes and
consider sensor and inner nodes only. In other words, we
compute C(X) for our system X comprising 4 nodes (2
sensors and 2 inner neurons) for individual agents, or alter-
natively of 8 nodes for two agents combined (in joint con-
ditions only). Moreover, of all the nodes that form these
agents’ neural architecture, the two inner nodes N1 and N2

(Figure 1) are the only units that are actively involved in
information processing. Therefore, we explicitly focus on
these inner nodes and follow Seth and Edelman (2004) by
examining only partitions that divide X into pairs compris-
ing a single neuron Ni (the i-th neuron of the agent) and the
set of all remaining nodes, thereby reducing equation 7 to
the following:

C(X) =
1

2

2∑
i=1

MI(XNi ;X \XNi) (8)

The formula above is applicable in all three scenarios
when analyzing the neural complexity of a single agent. In

8In the case where X is a single node N we have that
|cov(X)| = var(N).
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Figure 3: Behavior and activity.

order to compute the joint complexity of two agents per-
forming the task together (i.e., in GC and SC) we treat the
two agents A and B as a system Y composed of two inde-
pendent processes XA and XB . In this regard, the indepen-
dence ofXA andXB can be verified through the observation
that A and B do not share and/or communicate information
with one another and therefore they act independently. This,
in turn, indicates that the cov of Y relates to the joint covari-
ance of two independent processes XA and XB (Cormen
et al., 2006):

cov(Yj) = cov(XjA) + cov(XjA) (9)

where each subset of nodes Yj corresponds to the aligned
nodes of the two processes (XjA, XjB). The complexity
of Y is then straightforwardly computed by using equation
9 (i.e., the joint covariance matrix of independent processes
XA and XB) in equation 6 while computing MI in equa-
tion 8.

Considering equation 9, there are two points that deserve
further clarification. First, one might argue that the pres-
ence of common task violates the assumption of indepen-
dence. However, such a common drive on its own is insuf-
ficient to reject this assumption (e.g., daily commuters who
share a same bus schedule act independently, despite having
a common drive i.e., catching the same bus). More impor-
tantly, our GA setting does not impose any constraints on
joint action-space of agents in GC and SC settings.

Second, it may also appear plausible to argue that
H(Y ) = H(XA) + H(XB) is more adequate an ex-
pression for combining the two agents’ neural activity.
However, this is a mistake due to two observations. (1)
H(XA) + H(XB) = MI(XA;XB) −H(XA;XB) where
H(XA;XB) is joint entropy of XA and XB . (2) even the
use of its correct expression i.e.,MI(XA;XB) = H(XA)+
H(XB)−H(XA;XB) would result in capturing the higher-
level shared information (e.g., perception of environment
shared by A and B) than information integration by their
neural units, as reflected at their individual level.

Results
Evolved behavior
Agents evolved in all conditions were able to find a way to
effectively control the tracker to stay on top of the target.
However, the number of seeds that converged to a solution
varied in different conditions: 16 out of 20 in the IC, 13 in
the GC and 19 in the SC, suggesting that perhaps the Gener-
alist case was more difficult to evolve.

Figure 3 shows examples of behavior and neural and mo-
tor activation for all conditions from the best agent of the
population of selected seeds. The plotted data was obtained
for a trial in which the target moves in a slightly different
way than during evolution, i.e., with random velocity in the
range±[1, 2], random starting position within 50 units of the
center and random reversal point within 50 units of the orig-
inal reversal points. That way we test whether the agents are
able to generalize to a situation they were not trained on. We
can see that in all conditions the agents quickly catch up to
the target and are able to follow it.

With respect to neural output we can observe that it seems
to reflect the symmetric nature of the task and a resulting
symmetric nature of sensory input (the tracker receiving vi-
sual information about the target from either left or right eye)
and of motor output (the necessity to activate left or right
tracker wheel). While this mapping between input/output
and neural activity is not in principle a necessary outcome,
it is not unexpected and resembles well-established evidence
for topologies present in actual brains.

Another important note about neural activity is that while
Figure 3A shows an example of an individual agent which is
activating both of its inner nodes, the best agent of the ma-
jority of seeds (14 out of 16) in this condition “uses” only
one of its neurons in a sense of neuron output varying over
the trial time and correlating with input and output. The
other neuron in such cases is either at maximum or mini-
mum level of activation and remains constant, not contribut-
ing in a time-varying manner to behavior. The same is true
for the majority of the agents in the SC (26 out of 38) even if
they are performing the task together with an agent that ef-
fectively uses both neurons (example shown in Figure 3C).
By contrast, only 2 best performing agents in the GC use



only one neuron, presumably because of the higher task de-
mands. As discussed below, this might have implications for
our results concerning neural complexity.

With respect to motor activation, all examples shown
involve clear alteration of left and right motor output,
whether realized within a single agent or across collaborat-
ing agents. There are a few seeds in which a “braking strat-
egy” emerged, in which both motors are active at a given
time making the tracker stop temporarily (due to our exclu-
sive motor implementation). There does not seem to be any
correlation of this strategy with either conditions or perfor-
mance level so we do not discuss it further.
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Figure 4: Changes in neural complexity over generations.

Evolved neural complexity
As argued in the Introduction, if higher neural complex-
ity is to be indicative of better agent fitness in facing en-
vironmental demands, we would expect it to increase over
evolution. We therefore looked at how our measure C(X)
changes over generations. The results are plotted in Figure
4. The faint lines represent complexity values for all the con-
verged seeds and the thick lines the mean for each condition.
While there is a lot of variability among the different seeds,
it seems that overall complexity increases in the first 500
generations from the imposed starting point of 0 and then
remains stably high for the GC but actually drops for the
other two conditions. When examining individual seed plots
and specifically how C(X) changes in line with changes in
performance (not shown here), it can be noted that complex-
ity increases during the time in which the evolutionary al-
gorithm is searching for a task solution. Then, one of two
things happen. If the agents settle on a “use both inner neu-
rons” solution, complexity remains high. However, if they
find that using only one inner neuron is sufficient, complex-
ity drops. We address this further in the Discussion.

To understand how neural complexity differs between
conditions, we compared its values from the best agents
of the last generation of the seeds that converged on a
task solution.9 We find that for the regular individual-level

9While it might be worthwhile to examine complexity in the
failed seeds to understand how this measure reflects fitness, here we

C(X), i.e., neural complexity calculated from each individ-
ual agent, there is a statistically significant difference be-
tween conditions, F (2, 45) = 15.7, p < .001, specifically
with agents in the GC having higher neural complexity than
those in the IC (effect size d = −1.59) and SC (d = −1.83),
both at p < .001, as shown by Bonferroni-corrected pair-
wise t-tests but no difference between IC and SC (Figure 5).
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Figure 5: Individual-level neural complexity.

Similarly, joint neural complexity calculated from two
agents performing the task together is significantly higher
in the GC than in the SC, t(23.16) = 4.0169, p < .001,
r = .64, contrary to our predictions. Results of this compar-
ison are shown in Figure 6.
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Figure 6: Dyad-level neural complexity.

Discussion
In this work we tried to address the relationship between
neural complexity as a proxy for cognitive complexity and
varying levels of social complexity in a simple tracking task.
We compared both a non-social condition to social condi-
tions and two social conditions that differ in the level of divi-
sion of labor employed by the agents. We hypothesized that
neural complexity will be higher in social conditions than in
the isolated condition, and higher in a more generalist type
of division of labor (GC) than in a more specialized type
(SC). We further attempted to quantify neural complexity of

are specifically interested in comparing its levels between different
behavioral settings assuming the solution was found.



a joint system of two interactive partners taken as a whole
hypothesizing that it will not differ between the two social
conditions. Our predictions were partially confirmed.

First, with respect to the individual-level comparison, we
found that as expected, GC agents had the highest level of
neural complexity. However, it did not seem to differ be-
tween SC and IC agents. This is surprising given that in
the SC the agents had to coordinate with each other in con-
trolling the tracker and we would expect this task to pose a
higher cognitive demand than having to control the tracker
individually. It might be, however, that this difficulty was
offset by the fact that in this setting each of the agents had to
learn to control only one tracker wheel (left or right). There-
fore, the individual sensory-motor coordination demand was
lower.10 This result highlights the fact that an overall task
complexity might stem from different sources, related to
general sensory processing and motor control, as well as so-
cial coordination, and their effects on a particular task (or,
more generally, within a particular ecological niche) might
not always be easily distinguished.

Second, our observations on how neural complexity
changes over evolution as well as comparisons between con-
ditions at the end of evolution suggest that it is highly de-
pendent on the number of inner nodes that the agents ef-
fectively make use of in solving the task. This means that
higher complexity values in the GC might reflect the fact that
more agents in that condition use both neurons. On the one
hand, this might make neural complexity measure seem re-
dundant as we could simply consider the number of neurons
used (which would effectively reduce to a simple measure of
brain size). On the other hand, it confirms that the measure is
picking up something important about the neural resources
required in the task: that GC needs the contribution of both
inner nodes. It remains to be seen whether in a task that
is difficult enough to require the use of all available nodes
in all conditions, the measure would be sensitive enough to
differentiate between them if such a difference exists.

Third, the fact that even joint neural complexity is higher
in the GC than in the SC might mean two things. It could be
that the way we operationalized the joint version of C(X) is
too conservative to truly capture the distributed nature of the
system of two agents collaborating in a task. In particular,
the formulation of TSE in our study relied on two impor-
tant assumptions: (1) Gaussianity of agents’ neural activity
(as in Seth and Edelman (2004); Tononi et al. (1994)) (2)
independence of agencies in GC and SC settings. Whereas
the first assumption simplified TSE computation for agents’
multivariate neural representation, the second assumption
allowed for reduction of joint (i.e., two agents in GC and
SC) to an ordinary (i.e., single agent) TSE computation. Al-

10Note also that if the ability to use one or both motors was a
deciding factor affecting individual complexity, we would expect
no difference between IC and GC conditions which was not the
case.

though these simplifications enabled us to analyze the effect
of social settings on evolution of individuals’ brain dynam-
ics, they might have prevented us from detecting any po-
tential non-linear effects of an emergent higher-level system
(Candadai et al., 2019; Froese et al., 2013) that could have
delivered a joint complexity pattern of results different from
their individual version. However, how to formalize a col-
lective intelligence idea in a way that is both mathematically
and biologically plausible remains an outstanding challenge
and our contribution should be taken as a preliminary step in
this direction.

Another possibility with respect to our joint TSE results is
that the joint GC system is truly more complex than the joint
SC system. This could be due to a higher flexibility, redun-
dancy and tolerance of component loss of the former, as has
been argued for colony fitness of social insects (Jongepier
and Foitzik, 2016). In a small post-hoc test of this possibil-
ity on our evolved agents we run the best agent pair from GC
and SC (from the same seeds as depicted in Figure 3) in an
isolated simulation, i.e., asking them to control the tracker
without the partner contribution. In this test the GC agents
were still able to perform the task while the SC agents per-
formance completely disintegrated. Thus, the joint result
might reflect a real advantage of the GC division of labor.

As a concluding thought, on conceptual grounds, the re-
lationship between social, neural and cognitive complexity
is by no means straightforward. The notion of social com-
plexity can encompass anything from the number of indi-
viduals in the group and their genetic relatedness, through
patterns of parental care to the organization of various social
activities (Kappeler, 2019; Fischer et al., 2017; Bergman and
Beehner, 2015; Anderson and McShea, 2001). Brain com-
plexity can mean the total brain volume, the number and
type of neuronal connections or dynamic properties of gen-
erated neural activity. It can apply to the whole brain or
particular brain regions, for instance those believed to be
specifically associated with processing social input. Finally,
cognitive complexity will depend on our understanding of
cognition in general and how we choose to rank different
tasks. As a result, sweeping statements about relationships
between different levels of complexity are unlikely to be
productive. However, minimal agents-based simulations of
the type presented in this work can help disentangle the var-
ious factors that contribute to different types of complexity.
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