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Abstract

In this paper we present a Minimal Cognitive Agent model
of a joint action task. Pairs of agents realized as Continuous
Time Recurrent Neural Networks are submitted to artificial
evolution in the context of a task taken from psychological
literature. In this task the agents are required to coordinate
their complementary actions in order to jointly control the
movement of a tracker and successfully follow a continuously
moving target. It has been suggested that such a task requires
a more complex type of cognitive mechanism than the types
of processes postulated by the proponents of Embodied Em-
bedded Cognition approach. Specifically, it might possibly
require that the agents “co-represent” each other’s contribu-
tions to the common behavior. Our results show that simple
agents with no such built-in co-representation mechanism are
able to evolve a solution to the task. However, we also find
emergent neural activity patterns that are consistent with it.
In what sense these patterns can be said to be truly represen-
tational requires further study.

Introduction
The Embodied Embedded approach to cognition (EEC) pro-
poses that rather than being an activity of computation over
representations, cognition is primarily a matter of adaptive
behavior emerging from the agent’s concrete bodily abili-
ties, embeddedness in a particular environment, individual
organismic needs and a history of agent-environment inter-
action. Importantly, EEC does not deny that the agent’s in-
ternal states also play a role in producing adaptive behavior.
However, it questions whether conferring to such states a
status of representations is explanatorily useful, once a full
context of the agent’s resources is taken into account.

One way to test whether any specific cognitive achieve-
ment requires representations is via Minimal Cognitive
Agents (MCAs) methodology (Beer, 1996, 2008). Agents
with minimal brains (typically realized in neural networks
with only a few nodes) are evolved to perform tasks that
seemingly require representations (”representation-hungry
problems”; Clark and Toribio, 1994), and then analyzed as
to how successful behavior is actually produced in them

and whether that process relies on anything that can use-
fully qualify as a representation. Letting the solution to
a cognitive task emerge, rather than building it in, allows
one to question a priori assumptions about how such a task
should be accomplished, including assumptions about spe-
cific types of cognitive mechanisms. This strategy can be
applied both to generally defined cognitive capacities, such
as perceptual categorization (Beer, 2003) and to tasks drawn
from actual psychological experiments (Harvey et al., 2005).

In this paper we make preliminary steps in investigat-
ing the role of representational mechanisms posited in ac-
counts of social behavior. We focus specifically on joint ac-
tion, defined as a form of social interaction “whereby two or
more individuals coordinate their actions in space and time
to bring about a change in the environment” (Sebanz et al.,
2006). The EEC camp has produced a number of MCA
models of social interaction in the recent years. A large pro-
portion of these, however, has been aimed at demonstrating
a particular idea that social interaction is best understood
as an emergent phenomenon, not reducible to the individu-
als that partake in it (De Jaegher and Di Paolo, 2007). For
instance, several models (Di Paolo et al., 2008; Froese and
Di Paolo, 2008, 2010) have been proposed for human ca-
pacity of agency detection, i.e. an ability to recognize when
one is interacting with a live, responsive partner rather than
an inanimate object (Murray and Trevarthen, 1985; Auvray
et al., 2009). It has been shown that such recognition does
not necessarily require an agency detection module inside an
individual’s brain but can lie in interaction dynamics, i.e. the
fact that interaction with a live partner is more stable, more
self-reinforcing.

We believe these studies are interesting and important.
However, if the goal is to provide a genuine challenge to the
dominant paradigm in cognitive science, they are lacking for
two reasons. First, to show that evolved agents are not in fact
trading representations of (social) stimuli, a solid attempt
at investigating the representational status of their internal
states is required and this has not been done yet with respect



to the minimal social agents studies described above.1 Sec-
ond, we think the tasks that have been used so far are not suf-
ficiently representation-hungry to convince a staunch propo-
nent of a representation-based approach. This is because in
the joint action literature it is generally acknowledged that
a certain portion of social interactions (e.g. synchronization
effects; Richardson et al., 2007) can be explained in dynam-
ical non-representational terms, referred to as entrainment
or emergent coordination. However, it is maintained that in
more complex cases, all entrainment can do is make coor-
dination more smooth and timely. Apparently, when a situ-
ation requires discrete actions, when no online information
about co-actor’s movements is available or when prediction
is necessary, people need to represent the co-actor’s task,
their perceptual point of view or knowledge states, they need
to use forward models to predict the co-actor’s upcoming ac-
tions and so on (Knoblich et al., 2011; Sebanz and Knoblich,
2009a; Vesper et al., 2010).

In light of such views, the MCA strategy needs to be ap-
plied to a task in which mere non-representational entrain-
ment is believed to be insufficient. An example of such a
task is a study by Knoblich and Jordan (2003), henceforth
KJ. It is explicitly set up by the authors in such a way as
to require (1) coordination with a discrete action alternative
of the co-actor, not just its timing (2) coordination with a
predicted action of the co-actor, not merely a preceived one.

The KJ task environment is a one-dimensional field which
contains two objects that can overlap: target and tracker (see
Figure 1). On any trial, one of the objects, the target, starts
from the center of the screen and moves to the screen’s bor-
der (left or right), then reverses its direction, moves to the
other border and does so again, completing 3 turns. The
second object, the tracker, is controlled by the participant
and their goal is to keep it on top of the target for as much
time as possible by pressing two buttons: pressing the left
button accelerates the tracker to the left, pressing the right
button – to the right. When this task is performed by two
people, each is responsible for tracker acceleration in only
one of the directions.

The difficulty in this task is that once some amount of ac-
celeration has been added to the tracker in one direction by
pressing one of the buttons, the same amount of complemen-
tary button presses is required in order to first decelerate the
tracker and then accelerate it in the opposite direction. This
means that two strategies are possible in the region close to
the screen border (the border region). Acting merely reac-
tively would mean decelerating the tracker only once the tar-
get has reached the border and reversed its direction, which
would result in adequate tracking before that moment but
subsequent rapid accumulation of error (because the target
moves at constant speed). A more sophisticated anticipatory
strategy would mean starting to decelerate and accruing a

1See, for instance, Mirolli (2012) for such an attempt applied to
perceptual categorization.

small amount of error before the target reaches the border
in order to minimize future error. In a joint setting this re-
quires being able to coordinate with predicted actions of the
co-actor controlling the complementary action alternative.
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Figure 1: The joint tracking task environment (figure based
on KJ and Sebanz et al. (2006)).

The details of the experimental setup and conditions do
not concern us here. What is important is that good perfor-
mance in the joint condition was shown to be related to the
use of anticipatory strategy and a particular pattern of results
obtained was interpreted by KJ and others as based on learn-
ing a forward model of the co-actor’s task behavior.2 That
is, it is thought that each participant learned to predict the
timing of the other’s complementary action and the joint ef-
fects of combined responses and used these predictions to
coordinate one’s own action.

In this paper we set aside the question of whether this
interpretation of task behavior is plausible and we postpone
the discussion of possible representational claims that under-
lie it to the Discussion. Our goals are more modest. First, we
investigate whether MCAs can at all evolve to perform a ver-
sion of the KJ representation-hungry tracking task and, if so,
whether they are capable of adopting the anticipatory strat-
egy. Second, we undertake some exploratory steps in an-
swering the question whether the agents represent anything
about their co-actor. Following terminology in the joint ac-
tion literature we call this putative process co-representation
and we define it minimally as an internal state of one agent
that correlates with future action of the other agent and func-
tionally contributes to the generation of coordinated joint
performance.3 We examine whether such a state can be de-
tected in the evolved agents’ brain activity.

2“[Learning to coordinate] involves the acquisition of new pre-
dictive models during joint practice. A study by Knoblich and Jor-
dan (2003) provides evidence that, through training, it is possible
to integrate predictions about one’s own actions and the actions of
others” (Knoblich and Sebanz, 2006, p. 236). “Feedback led part-
ners to develop a model of each other, allowing them to anticipate
each other’s action timing” (Eskenazi et al., 2012, p. 102).

3There is considerable discussion as to the precise content of
co-representations, e.g., Sebanz et al. (2005); Dolk et al. (2016).
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Figure 2: Agent environment.

Methods
Task environment
The joint action paradigm created by Knoblich and Jordan
(2003) was implemented in a simulated model as follows.
The environment consisted in a 1D line 40 units wide, sur-
rounded by borders. It contained a target and a tracker that
could move horizontally between the borders in the incre-
ments determined by their speed and the time step granular-
ity set to 0.01. The collaborating agents were located “in-
side” this environment, as if on top of the tracker and both
in the exact same position (see Fig. 2).

Each agent pair in a single simulated generation was sub-
jected to six trials that were a result of crossing three levels
of target velocity and two initial target directions (left, right).
Each trial started with both the target and the tracker in the
middle. After an initial starting period (of T = 100 time
steps) in which both objects remained stationary, the target
would start moving away from the center at constant veloc-
ity. Upon reaching one of the borders, it changed direction.
Each trial consisted of three target turns, ending again in the
middle of the environment. The tracker movement was con-
trolled by a pair of agents, where one member of the pair was
responsible for the left and another for the right tracker ve-
locity. When the tracker reached the border, its velocity was
set to zero – even though the agents could still have non-zero
output of their motor neurons. In this way, the tracker’s “vir-
tual” non-zero velocity that forces the agents to decelerate in
one direction before accelerating in the other is instantiated
in our model in the motor outputs.

Agent architecture
Each agent received perceptual input and was producing mo-
tor output. The agents had four “eyes” directed towards left
and right that received information about the absolute dis-
tance to the two borders and the target (see Fig. 2). That is,
border-receptive eyes were constantly receiving input (since
the agents were always in between the two borders) while
target-receptive eyes were receiving input only if the target
was located on the side for which a given eye was responsi-
ble (left or right). The distance was scaled linearly in such
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Figure 3: Agent morphology.

a way that the maximum visual input was 10, when the dis-
tance was 0 and minimum was 0, when the distance was
maximal, i.e. 40. For the target-receptive eyes the input was
also 0 when the target was on the opposite side to a given
eye and it was maximal to both eyes when the tracker was
directly on top of the target.4 The agents also received audi-
tory input. Each sensor (“ear”) was activated by just one of
the sounds produced by the motors: left or right. The sound
was produced continuously by the motor activation and was
directly proportional to its magnitude.

The motor output of the agents controlled the movement
of the tracker. We have experimented with two modes of
control: discrete button-based and direct velocity control.
However, pilot studies showed that the former does not lead
to reliable results and therefore we focus on the direct veloc-
ity control in the remainder of this paper (but see Discussion
for possible limitations of this approach). Each agent had
two motors (effectors), left and right, where the left motor
velocity could only be negative and the right motor velocity
could only be positive. Each agent contributed only one ef-
fector output to the tracker control and tracker velocity was a
simple sum of motor activation of the two effective motors.

The agents in the present study were controlled by a net-
work of 8 neurons as depicted in Figure 3. The 8 neurons
were fully inter-connected and self-connected. There were
additional visual and auditory weights (range [−100, 100])
from perceptual input to the neurons, as well as motor
weights (range [0, 10]) from motor neurons to left and right
motors. No symmetry was imposed on the network.

CTRNN update rule for each neuron was defined by the

4We have tested two basic ways of providing agents with vi-
sual input: as absolute target and tracker position and as relative
distance. That is, in the first case the agents were “outside” the
environment, looking at it as if presented on a screen, while in the
second they were “inside”, as if moving on top of the tracker. We
have observed that the second architecture led to faster and more
reliable solutions, indicating perhaps that MCAs evolve more eas-
ily when the task is setup in a more embodied way.



following standard formula:

ẏi =
1

τi
(−yi +

N∑
j=1

wjiσ(yj + θj) + Ii), i = 1, 2, ..., N (1)

where y is the state of each neuron, τ is its time constant
(range [1, 100]), wji is the connection strength (the weight)
from the jth to the ith neuron (range [−15, 15]), θ is a bias
term (range [−15, 15]), σ is the standard logistic activation
function and Ii represents an external (perceptual) input to
the neuron. We applied the Euler integration method with a
time step set to h = 0.01 to obtain the time evolution of the
simulation.

Evolutionary algorithm
The behavior of the agents was evolved using a real-valued
mixed genetic algorithm (GA) applied to their neural net-
work parameters. The genomes were composed of all
parameters (time constants, bias terms, weights of inter-
neurons, visual sensors, auditory sensors and effectors) for
the total of 90 positions separated into 6 indivisible modules.

The population size was N = 100 split equally in 2 pop-
ulations for agents controlling left and right effectors. The
population of agents was initialized with random parameters
drawn from their full range. After each trial, agent fitness
scores were calculated according to this formula:

F = 1−

T∑
i=1

di

D · (T + S)
− P (2)

P = 1
T |{ vi | vi = 0 for i = 1, 2, ..., T}| (3)

where di is the absolute distance between target and
tracker at a given simulation step, T is the simulation length
(T ∈ [3000, 4000, 6000], depending on target velocity),
D is the maximum possible distance between target and
tracker (equal to 40 for all simulations), S is the starting
period length (equal to 100 for all simulations), P is the
penalty function, which is defined as the average number
of times the tracker velocity was 0 in a given trial. We
added this penalty function to the fitness calculation to en-
courage movement of the agents. If penalty decreased the
fitness score below 0, it was clipped to 0. The overall fitness
score for every agent was calculated as harmonic mean over
scores in all trials. The same fitness score was assigned to
each member of the pair that controlled the tracker. Evo-
lution operations were applied separately to left and right
sub-populations of agents.

A new generation was created by copying the best agents
without modification (5% of the new population), apply-
ing fitness proportionate selection to the whole population

(80%), with rank-based, stochastic universal sampling selec-
tion, mutation variance set to 10 and probability of crossover
to 0.8 (applied at genetic module boundaries). The re-
maining 15% of the population was filled up with new ran-
domly initialized agents. The evolution was stopped after
2000 generations or after 500 generations passed without
improvements of the best agents’ performance.

Results
Behavioral strategies
In analyzing trial behavior of successful agents we have ob-
served two main strategies. The most prevalent task solu-
tion that evolved can be called an “independent strategy” in
which one agent provides a continuous motor output of a
given magnitude and the other agent varies its output in an
oscillatory manner (Fig. 4A). This allows the pair to produce
overall velocity that oscillates around 0 leading the tracker
to continually switch directions staying close to the target.
A second strategy involves both agents producing oscillating
output and its combination allowing the tracker to follow the
target (Fig. 4B-D). In further analysis we focus on the latter,
given that it is a more interesting case of collaboration and a
more comparable case to the human study5. We specifically
examine the best pair of the last generation from one popu-
lation that evolved such a strategy and that achieved a fitness
score of F = 0.966 (range [0, 1]).

Figures 4B-D present behavior in three of the trials of this
best pair. Overall, the patterns look similar in all 6 trials but
are not completely symmetric between those in which the
target starts by moving to the right and those in which it first
moves to the left. Furthermore, motor oscillations (and the
resulting velocity and movement oscillations) show a lower
frequency in faster trials, which allows the agents to track
the target by producing only longer period displacements,
with less oscillations around the target. This is accomplished
by slowing down of the left motor oscillations (Fig. 4D).

The left-right asymmetry is also noticeable in the tracking
strategy of the agents. In particular, they exhibit something
that looks like anticipatory strategy (reversing before reach-
ing the border) only at the right border while at the left bor-
der they seem to adopt a more compensatory strategy. The
reason for this asymmetry is not clear but the behavior at
the right border gives us a proof of concept that the agents
can adopt anticipatory strategy. Perhaps a stronger selection
pressure would lead to its more consistent application.

Examining the movement patterns it seems that rather
than adopting a division of labor in which one agent controls
movement to the left and the other to the right, the division
is more along the lines of the left agent (call it L) producing
fast oscillations around the target position and the right agent
(R) producing slow oscillations as the target moves in be-

5Recall that in the original KJ study both participants had to act
in complementary ways at different time points.
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Figure 4: Behavioral patterns in different trials (trial durations re-sampled to 3000 time steps).

tween the two borders. Successful tracking is accomplished
by an alternation of the length of leftward and rightward
displacement which is a result of the oscillation frequency
of the left motor and the output strength of the right motor.
That is, the predominantly negative velocity is produced by
slow oscillation of the left motor whose output is higher than
that of the right with either both highly active or both only
slightly active motors. The predominantly positive velocity
is a result of fast left motor oscillations combined with con-
stant high output of the right motor which pulls the overall
tracker velocity above 0 with only short negative drops. It
can also be noted that the right motor is active in a nearly
exact same way across the different speed trials and the only
difference between trials in which target initially moves left
or right is in a phase shift of its activity.

To go beyond the description of experimental trials that
the agents were trained on, we first checked the ability of the
best pair to generalize to four new trial types: target starting
from a set or random points within [−3, 3] coordinates, new
target speeds, borders increased to [−30, 30] and the number
of turns increased to 5. We found that the agents perform
reasonably well in all these conditions, with an average score
of F = 0.955.

Next, we conducted a series of lesion studies in which we
disabled some perceptual input to the agents and observed
the resulting behavior. We determined that auditory percep-
tion does not seem to be critical to the performance in this
task. A lack of possibility to hear the co-actor’s motor acti-
vation leads to less precise tracking but it is still sufficiently
good throughout the trial. Visual perception, on the other
hand, predictably, does seem critical. If either perception of
the border or the target is removed from the beginning of the
trial, performance is severely disrupted. If border input is
removed around the middle of the trial, from the time of the
lesion the agents manage to complete faster trials but strug-
gle on the slower ones. Such delayed loss of target informa-
tion is slightly more detrimental – soon after the input is re-
moved the left agent stops its oscillations leading the tracker
off course. Interestingly, also here in the fastest trial ade-
quate behavior seems to be maintained. This, together with

generalization results, confirms that the agents rely on on-
line information about the target’s position and the tracker’s
position relative to the borders in accomplishing the task,
rather than simply memorizing the required behavior.

Finally, we checked whether the contribution of both
agents is in fact required to accomplish the task and run the
trials with just L or R agent acting alone and having con-
trol of both motors. With only L agent in control, its motors
become maximally active and the tracker drifts to the right
border and stays there immobile. With R agent acting alone,
both of its motors start slow oscillations that results in the
tracker moving to the right border and wiggling there with-
out ever returning to the middle. Thus, it would seem that
the agents trained on joint action cannot perform the task
alone. However, following the EEC idea that interaction is
what matters to social behavior, we performed a further test
of the actual “jointness” of agent behavior: by running tri-
als in which only one agent was actually performing the task
and the contribution of the other agent was played back from
previous runs of the same trials. We found that this makes
virtually no difference to the overall behavior of the tracker,
suggesting that the agents do not evolve to be sensitive to
the live interaction partner but rather to merely control the
tracker independently given the background conditions of
an assumed co-actor’s reliable contribution. We return to
this observation in the Discussion.

Cross-agent relationships
We have defined co-representation as “an internal state of
one agent that correlates with future action of the other
agent” which in our model translates into a correlation be-
tween the state of the nodes of one agent and the motor
output of the other agent with a time lag. In order to cap-
ture this relationship we employed an information dynam-
ics approach, which allows one to asses how information
flows through the network (Williams and Beer, 2010; Bosso-
maier et al., 2016).6 This approach can be used to investi-
gate statistical relationships between particular variables but

6It is important to emphasize that ‘information’ here is meant
in a strictly statistical sense, not in semantic sense.
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Figure 5: Effective networks across agents in 2 regions of
interest.

also to infer effective networks in a given system that ex-
plain the observed time series. Such effective network infer-
ence (ENI) procedure typically involves measuring pairwise
transfer entropy (TE) between all pairs of variables, pruning
the connections above a certain p-value and correcting for
multiple comparisons (Lizier and Rubinov, 2012).

In this study we employed the ENI procedure to investi-
gate whether there are detectable relationships between two
agents by conceptualizing a potential effective network as
a combined agent-agent system. We included time-series
data from a non-visual subset of the neurons (neurons 5-8)
as potential TE sources and an output of the motor effec-
tively controlled by the other agent as TE target. In order to
minimize the possibility of finding spurious correlations we
included experimental target and tracker positions as condi-
tional variables. That is, given the constrained and regular
nature of the task, it is conceivable that one could predict
motor activity just based on the location of the target and
tracker. Since we wanted to know whether there is addi-
tional predictive power from the neural activity of one of the
agents, over and above task context, we conditioned on these
positions. The time-series data from all trials was used as
separate replications of the process. We used an open-source
software (Wollstadt et al., 2017) to run ENI with an estima-
tor most suited for non-linear continuous data (the Kraskov
algorithm; Kraskov et al., 2004).

In order to get a handle on the functionality of any po-
tential correlation, we separately tested the relationships for
two different regions within the task environment: (1) pre-
border region when the target was within 200 time steps
before reaching the border and (2) center region when the
target was around 200 time steps within the center of the en-
vironment. We reasoned that since predicting the co-actor’s
action is more relevant to controlling the tracker before the
border (when anticipatory strategy is required) than control-

ling it when it is around the center, statistical relationship in
question should be more pronounced there.

The network plots of Figure 5 show ENI results for the
two regions for both agents. In these plots, x tr and x tg rep-
resent the variables that capture the tracker and target posi-
tions; motor is the left or right motor activation and n5 to n8
are the activation of neurons 5 to 8 of the agents’ brains. The
edges between the nodes are statistically significant links
between the variables they represent while the numbers on
those edges are the time lags for which (the strongest) sig-
nificant link was found (all p < 0.003).

The plots suggest that indeed in the areas around the cen-
ter of the environment, the only predictive links are between
the positions of target and tracker and the motor activity of
both agents. On the other hand, before the border region
there is a statistical dependence between all considered neu-
rons of the left agent (responsible for movement around the
target) and the motor output of the right agent (in charge of
movement between the borders) and a statistical dependence
between the 8-th neuron of the right agent and the motor out-
put of the left agent. This seems consistent with a minimal
notion of ‘co-representation’ we adopted. However, whether
the relationship is really functional in producing behavior
and whether it is most useful to interpret the network activ-
ity as a representation requires further investigation

Discussion
In this paper we have presented a study of joint action be-
tween minimal cognitive agents that evolved to follow a tar-
get while controlling a common tracker in a complemen-
tary manner. We have found that the agents can emerge
that solve this task successfully, that the solution relies on
their timely coordination and that part of the solution resem-
bles a more complex anticipatory strategy employed by hu-
man participants in the original KJ study. This result could
mean that the task is actually not as representation-hungry
as assumed in joint action literature, i.e., it can be solved
without (co-)representations. Another possibility is that the
task does indeed require representations and success indi-
cates that MCAs are capable of representation-based activ-
ity. Which of the two is the case would need an agreement on
a precise definition of representation, which is notoriously
difficult to come by (Haselager et al., 2003).

We have adopted one possible definition and operational-
ization of “co-representation” as a state in one of the agents
that carries (statistical) information about something in the
other agent and contributes to the production of joint behav-
ior. We based this definition on a common idea that rep-
resentation is a state that stands in for certain external fea-
tures (entities, properties, events) and plays some function in
further cognitive processing and producing adaptive behav-
ior (Dretske, 1988; Millikan, 1984). Our results delivered
some support for the existence of such a state in the evolved
agents. However, one could argue that our definition is both



too liberal – in that it risks proliferation of representations
beyond cognitive systems (Hutto and Myin, 2013) – and too
simplistic in not capturing what is actually intended by the
term “co-representation”.

Specifically, what many of the appeals to representations
in social behavior are supposed to capture is that good per-
formance requires that one person has an inner model of
their partner, uses it to predict what they will do, how, when
and where (Sebanz and Knoblich, 2009b) and, thereby, ad-
just one’s own action to this and the joint outcome prospec-
tively rather than after the fact. The content of this model
can vary in abstraction, from simulations of the co-actor’s
movements to their intentions (Rizzolatti and Sinigaglia,
2010) or the way the joint task is divided (Vesper et al.,
2010). What is typically common to such varied possible
representations is that they instantiate functional similarity
between two individuals and it is in virtue of this similarity
that coordinated joint action can ensue. That is, it is not just
that agents have certain internal states that are caused by
and/or correlate with, say, a particular characteristic of the
co-actor. Rather, it is that agents possess complex internal
states that instantiate some structural isomorphism between
them, which is then used to understand, predict and coordi-
nate behavior.

What remains unclear at present is if MCAs are also ca-
pable of this type of structural representation and how its
presence and function could be established. Presumably, it
would require some way to measure the similarity between
the evolved internal structure and what it represents and a
way to determine whether the similarity itself plays a func-
tional role in the cognitive process. To our knowledge, no
such work has been carried out yet – at least with respect
to MCAs.7 However, it is a promising avenue to clarify the
cognitive requirements of different social behaviors and the
meaning of constructs used in their explanations.

Apart from this large conceptual question, there is a num-
ber of smaller but still relevant open issues that need to be
addressed in future research. First, the difficulty with evolv-
ing successful solution with button-based velocity control
makes our findings vulnerable to a common complaint from
the opponents of the EEC approach that it is unable to deal
with discrete behaviors. In the KJ task the fact that partic-
ipants are required to produce discrete complementary ac-
tions is seen as a crucial component of its representation-
hungriness. By switching to direct velocity control we are
both not facing the challenge heads-on and allowing for so-
lutions to evolve along the lines not conceived by the origi-
nal study. This is interesting on its own but makes our results
less comparable to the study we aimed at replicating.

Second, our post-hoc playback analysis suggests that the
agents are not really acting jointly in this “joint action” set-
ting if jointness or, more generally, sociality is understood as

7There is related work on categorization in neural networks
(Laakso and Cottrell, 2000) that could be taken as an inspiration.

something more than merely performing the same task. That
is, at least from an EEC perspective (Froese et al., 2011)
interacting with another social agent is different than inter-
acting with, say, an inanimate tool because another agent is
herself a locus of adaptive behavior, goal-directedness and
normativity, which have to be reckoned with in any joint
endeavor. This might well require planning and prediction
but also sensitivity to the ongoing social dynamics. The
fact that our evolved agents behave largely the same with a
live vs playback partner suggests that the task does not actu-
ally require co-regulation and can be accomplished individ-
ually while acting in parallel. However, this brings up the
question whether the original KJ study involved a genuine
joint action as well, highlighting the potential for artificial
simulations to inform further psychological experiments. A
follow-up study could be designed with a heavier demand
for co-regulation, for instance, by requiring agents (or hu-
man participants) to coordinate with different individuals or
by introducing other sources of uncertainty such as sensori-
motor noise or delay (Rohde and Di Paolo, 2007).

Finally, we have employed the information dynamics ap-
proach to a study of a very constrained part of the full ex-
tended system operational in this task, i.e. the agents’ brains
and actions. Future work should employ it to investigate
the contributions of other parts of this system – the agents’
anatomy and their environment – to deliver a deeper under-
standing of how the solution to the task is produced and to
situate putative co-representations’ role in this process. It
might turn out that once such an analysis is complete, co-
representations are merely an emergent pattern of statistical
dependencies without an actual explanatory import.
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